broach 发表于 2025-3-21 18:27:46
书目名称Web Information Systems and Applications影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications网络公开度<br> http://impactfactor.cn/at/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications被引频次<br> http://impactfactor.cn/tc/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications年度引用<br> http://impactfactor.cn/ii/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK1021546<br><br> <br><br>书目名称Web Information Systems and Applications读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK1021546<br><br> <br><br>Vaginismus 发表于 2025-3-21 23:19:00
Web Information Systems and Applications978-3-030-60029-7Series ISSN 0302-9743 Series E-ISSN 1611-3349Repetitions 发表于 2025-3-22 03:55:22
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/w/image/1021546.jpgstressors 发表于 2025-3-22 08:06:05
https://doi.org/10.1007/978-3-030-60029-7artificial intelligence; computer networks; computer security; computer systems; data mining; data securiRange-Of-Motion 发表于 2025-3-22 12:40:28
http://reply.papertrans.cn/103/10216/1021546/1021546_5.pnginflame 发表于 2025-3-22 14:20:34
http://reply.papertrans.cn/103/10216/1021546/1021546_6.pngAesthete 发表于 2025-3-22 20:08:17
Effective Knowledge-Aware Recommendation via Graph Convolutional Networkss paper, we propose the improved Knowledge-aware Graph Neural Networks with Label Smoothness Regularization (iKGNN-LS) model, which makes two improvements to KGNN-LS: (1) In iKGNN-LS, by introducing user-specific entity scoring functions, the edge weights are determined jointly by personalized userAccrue 发表于 2025-3-23 00:27:55
http://reply.papertrans.cn/103/10216/1021546/1021546_8.pngRoot494 发表于 2025-3-23 04:43:05
http://reply.papertrans.cn/103/10216/1021546/1021546_9.png桉树 发表于 2025-3-23 05:38:04
Micro-nano Depth Information Recovery Method Based on TV Regularizationrization parameters, the depth of the recovery is avoided. The information is too smooth and retains more detail. The depth information recovery experiments of the standard 500 nm scale grid show that compared with the Tikhonov regularization method and the TSVD regularization method, the L_TV algor