NAVEN 发表于 2025-3-23 12:20:25
News Popularity Prediction with Local-Global Long-Short-Term Embeddings. This paper presents ., a neural model to predict news popularity by learning news embedding from global, local, long-term and short-term factors. . integrates a sentence encoding module to represent the local context of each news story; a heterogeneous graph-based module to capture the short-term眉毛 发表于 2025-3-23 15:13:35
http://reply.papertrans.cn/103/10216/1021538/1021538_12.pngaccordance 发表于 2025-3-23 20:45:09
http://reply.papertrans.cn/103/10216/1021538/1021538_13.pngatrophy 发表于 2025-3-24 01:44:14
http://reply.papertrans.cn/103/10216/1021538/1021538_14.png在前面 发表于 2025-3-24 04:54:04
http://reply.papertrans.cn/103/10216/1021538/1021538_15.png厨师 发表于 2025-3-24 07:14:32
http://reply.papertrans.cn/103/10216/1021538/1021538_16.png表示向下 发表于 2025-3-24 12:02:21
http://reply.papertrans.cn/103/10216/1021538/1021538_17.pngTAIN 发表于 2025-3-24 15:36:46
http://reply.papertrans.cn/103/10216/1021538/1021538_18.png慢慢冲刷 发表于 2025-3-24 22:42:12
http://reply.papertrans.cn/103/10216/1021538/1021538_19.png名次后缀 发表于 2025-3-25 03:00:19
Comparison the Performance of Classification Methods for Diagnosis of Heart Disease and Chronic Condds for chronic diseases. The five categories of chronic disease datasets were collected from UCI and GitHub database include heart disease, breast cancer, diabetic retinopathy, Parkinson’s disease and diabetes. Machine learning (ML) methods including six individual learners (logistic regression (LR)