Extemporize 发表于 2025-3-26 21:04:15
http://reply.papertrans.cn/103/10214/1021314/1021314_31.pngImmunoglobulin 发表于 2025-3-27 03:02:02
http://reply.papertrans.cn/103/10214/1021314/1021314_32.pnggentle 发表于 2025-3-27 05:40:13
Semigroup Theory for the Stokes Operator with Navier Boundary Condition on , Spaces,al semigroup theory in ..-spaces related to the Stokes operator with Navier boundary condition where the slip coefficient . is a non-smooth scalar function. It is shown that the strong and weak Stokes operators with Navier conditions admit analytic semigroup with bounded pure imaginary powers. We alPhonophobia 发表于 2025-3-27 10:15:15
Remarks on the Energy Equality for the 3D Navier-Stokes Equations,ated with the 3D Navier-Stokes equations with Dirichlet boundary conditions. While the energy equality is satisfied for strong solutions, the dissipation phenomenon is expected to be connected with the roughness of the solutions. A natural question is, then, which regularity is needed for a weak solAqueous-Humor 发表于 2025-3-27 15:25:17
http://reply.papertrans.cn/103/10214/1021314/1021314_35.png漂白 发表于 2025-3-27 19:14:09
http://reply.papertrans.cn/103/10214/1021314/1021314_36.png敲诈 发表于 2025-3-27 22:17:39
http://reply.papertrans.cn/103/10214/1021314/1021314_37.pngpersistence 发表于 2025-3-28 02:59:10
http://reply.papertrans.cn/103/10214/1021314/1021314_38.png向外 发表于 2025-3-28 08:42:47
,Compressible Navier-Stokes System on a Moving Domain in the , − , Framework,vector field ., in a maximal .. − .. regularity framework. Under additional smallness assumptions on the data we show that our solution exists globally in time and satisfies a decay estimate. In particular, for the global well-posedness we do not require exponential decay or smallness of . in ..(..)蔑视 发表于 2025-3-28 13:34:33
http://reply.papertrans.cn/103/10214/1021314/1021314_40.png