Sentry
发表于 2025-3-21 19:12:19
书目名称WALCOM: Algorithm and Computation影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK1020032<br><br> <br><br>书目名称WALCOM: Algorithm and Computation读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK1020032<br><br> <br><br>
牵索
发表于 2025-3-21 23:49:46
http://reply.papertrans.cn/103/10201/1020032/1020032_2.png
Increment
发表于 2025-3-22 04:19:22
http://reply.papertrans.cn/103/10201/1020032/1020032_3.png
无目标
发表于 2025-3-22 05:27:59
Approximability of Stable Matching Problems of two natural relaxations, allowing ties and incomplete lists, has been started shortly after the Gale-Shapley paper, and before long it turned out that there are still linear time algorithms, namely the problem does not become inherently harder, if we allow either one of the two relaxations.
Mast-Cell
发表于 2025-3-22 12:10:42
http://reply.papertrans.cn/103/10201/1020032/1020032_5.png
格子架
发表于 2025-3-22 13:07:07
http://reply.papertrans.cn/103/10201/1020032/1020032_6.png
高谈阔论
发表于 2025-3-22 21:01:17
http://reply.papertrans.cn/103/10201/1020032/1020032_7.png
易发怒
发表于 2025-3-22 23:35:08
Comparing and Aggregating Partial Orders with Kendall Tau Distances problem is known to be .-complete for total and bucket orders, even for four voters and solvable in . for two voters. It is .-complete for two partial orders and the nearest neighbor Kendall tau distance. For the Hausdorff Kendall tau distance it is in ., but not in . or . unless ., even for four v
mutineer
发表于 2025-3-23 02:38:42
On the Round-Trip 1-Center and 1-Median Problemse. In addition, assuming that a matrix that stores the shortest distances between every pair of vertices is given, we give an .(. ∑ . min {|..|, .} + .|.|)-time algorithm. Our improvement comes from a technique which we use to reduce each set ... This technique may also be useful in solving the depo
defeatist
发表于 2025-3-23 06:06:59
On the Round-Trip 1-Center and 1-Median Problemse. In addition, assuming that a matrix that stores the shortest distances between every pair of vertices is given, we give an .(. ∑ . min {|..|, .} + .|.|)-time algorithm. Our improvement comes from a technique which we use to reduce each set ... This technique may also be useful in solving the depo