Orthosis 发表于 2025-3-21 19:59:11
书目名称WALCOM: Algorithms and Computation影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation网络公开度<br> http://impactfactor.cn/at/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation被引频次<br> http://impactfactor.cn/tc/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation年度引用<br> http://impactfactor.cn/ii/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK1020028<br><br> <br><br>书目名称WALCOM: Algorithms and Computation读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK1020028<br><br> <br><br>男生如果明白 发表于 2025-3-21 23:27:36
http://reply.papertrans.cn/103/10201/1020028/1020028_2.png扩大 发表于 2025-3-22 01:58:58
http://reply.papertrans.cn/103/10201/1020028/1020028_3.pngAbnormal 发表于 2025-3-22 05:10:40
http://reply.papertrans.cn/103/10201/1020028/1020028_4.pngLEERY 发表于 2025-3-22 10:04:24
http://reply.papertrans.cn/103/10201/1020028/1020028_5.png窃喜 发表于 2025-3-22 14:32:54
http://reply.papertrans.cn/103/10201/1020028/1020028_6.pngEssential 发表于 2025-3-22 18:29:17
http://reply.papertrans.cn/103/10201/1020028/1020028_7.png镶嵌细工 发表于 2025-3-22 21:12:38
Hard and Easy Instances of L-Tromino Tilingsegions where only . rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region does not contain so-called “forbidden polyominoes” as subregions, then there exists a polynomial time algorithm for deciding a tiling.Flinch 发表于 2025-3-23 04:18:35
http://reply.papertrans.cn/103/10201/1020028/1020028_9.pngNATAL 发表于 2025-3-23 06:39:55
Computing the Metric Dimension by Decomposing Graphs into Extended Biconnected Componentssion for a class of graphs having a minimum resolving set with a bounded number of vertices in every extended biconnected component. Furthermore, we show that the decision problem . remains NP-complete when the above limitation is extended to usual biconnected components.