Madrigal 发表于 2025-3-27 00:37:27

http://reply.papertrans.cn/11/1004/100360/100360_31.png

险代理人 发表于 2025-3-27 04:47:58

http://reply.papertrans.cn/11/1004/100360/100360_32.png

柔美流畅 发表于 2025-3-27 08:28:53

Cemal Kavalcıoğlu,Bülent BilgehanLet {..}. be an increasing sequence of positive integers. In this chapter we investigate some conditions under which the sum of the series . is an irrational number, and then we apply these results to the case for which the sequence {..}. is the sequence of Fermat numbers.

trigger 发表于 2025-3-27 12:21:42

http://reply.papertrans.cn/11/1004/100360/100360_34.png

能得到 发表于 2025-3-27 17:27:02

https://doi.org/10.1007/978-3-030-04275-2In this chapter we show how to apply Fermat numbers to generate infinitely many pseudoprimes and superpseudoprimes. To define pseudoprimes and superpseudoprimes, we will need to make use of Fermat’s little theorem which is a centerpiece of number theory. It gives a fundamental property of primes and is the basis of most tests for primality.

Oration 发表于 2025-3-27 18:15:25

Studies in Systems, Decision and ControlWe will explore generalizations of Fermat numbers that share many of the same properties of the Fermat numbers; these properties were given in earlier chapters. We will also investigate other numbers such as the Cullen numbers, which bear some resemblance to the Fermat numbers.

不怕任性 发表于 2025-3-28 00:53:56

http://reply.papertrans.cn/11/1004/100360/100360_37.png

CHAFE 发表于 2025-3-28 03:55:37

http://reply.papertrans.cn/11/1004/100360/100360_38.png

漂亮 发表于 2025-3-28 08:34:17

17 Lectures on Fermat Numbers978-0-387-21850-2Series ISSN 1613-5237 Series E-ISSN 2197-4152

occurrence 发表于 2025-3-28 12:42:10

https://doi.org/10.1007/978-0-387-21850-2Fermat; Fermat Numbers; History of Mathematics; Mersenne number; Prime; number theory
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal Křížek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma