变更 发表于 2025-3-21 17:19:18
书目名称(Mostly) Commutative Algebra影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0100077<br><br> <br><br>书目名称(Mostly) Commutative Algebra读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0100077<br><br> <br><br>cutlery 发表于 2025-3-21 21:17:41
http://reply.papertrans.cn/11/1001/100077/100077_2.pngcoddle 发表于 2025-3-22 04:21:23
Margret Liehn,Hannelore Schlautmannpe of proving Fermat’s Last Theorem! — tried to make use of unique factorization in rings where it didn’t hold. Ideals are one device that was then invented to gain a better understanding of divisibility. In this context, there are two natural analogues of prime numbers, namely maximal and prime ideAXIOM 发表于 2025-3-22 06:07:46
http://reply.papertrans.cn/11/1001/100077/100077_4.png舔食 发表于 2025-3-22 11:54:07
http://reply.papertrans.cn/11/1001/100077/100077_5.pngovation 发表于 2025-3-22 15:28:44
http://reply.papertrans.cn/11/1001/100077/100077_6.png关心 发表于 2025-3-22 17:55:56
http://reply.papertrans.cn/11/1001/100077/100077_7.pngIndent 发表于 2025-3-22 21:26:24
http://reply.papertrans.cn/11/1001/100077/100077_8.pngAprope 发表于 2025-3-23 01:53:54
https://doi.org/10.1007/978-3-642-34008-6Rings, the definition of which is the subject of this chapter, are algebraic objects in which one can compute as in classical contexts, integers, real numbers or matrices: one has an addition, a multiplication, two symbols 0 and 1, and the usual computation rules are satisfied.干旱 发表于 2025-3-23 08:29:41
Ge Zhu,Feifei Yang,Tingting ChenOne aspect of commutative algebra is to not only consider modules over a given fixed ring, but also morphisms of (commutative) rings.