DIGN
发表于 2025-3-21 19:23:28
书目名称(In-)Stability of Differential Inclusions影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0100071<br><br> <br><br>书目名称(In-)Stability of Differential Inclusions读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0100071<br><br> <br><br>
Arboreal
发表于 2025-3-21 22:01:07
http://reply.papertrans.cn/11/1001/100071/100071_2.png
FRAX-tool
发表于 2025-3-22 02:21:24
http://reply.papertrans.cn/11/1001/100071/100071_3.png
antidepressant
发表于 2025-3-22 08:05:45
G. Lepsien,J. Schneider,K. Dietrichts on comparison functions are derived. The results provide lower bounds used in the proofs in this monograph as counterparts to upper bounds contained in the literature. The second part collects known results used in Chap. ..
LAPSE
发表于 2025-3-22 11:45:34
Philipp Braun,Lars Grüne,Christopher M. KellettOffers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations.Provides derivation of strong/weak complete instability results for systems in terms of L
Muffle
发表于 2025-3-22 14:18:09
http://reply.papertrans.cn/11/1001/100071/100071_6.png
Dri727
发表于 2025-3-22 19:05:23
https://doi.org/10.1007/978-3-642-71711-6s characterizing stability and stabilizability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring
憎恶
发表于 2025-3-22 21:18:36
https://doi.org/10.1007/978-3-642-71711-6r differential equations and corresponding Lyapunov-like characterizations. Since in the context of differential inclusions smooth control Lyapunov functions are not sufficient to describe weak stability properties, we use nonsmooth control Lyapunov functions in the Dini sense. Nonsmooth control Lya
Canyon
发表于 2025-3-23 02:56:16
http://reply.papertrans.cn/11/1001/100071/100071_9.png
指耕作
发表于 2025-3-23 07:33:52
https://doi.org/10.1007/978-3-642-71711-6is chapter we discuss . and . results, where properties need to be satisfied for at least . instead of for .. While the results from the last chapter allowed us to draw conclusions in terms of robustness, the results in this chapter guarantee stabilizability or destabilizability of the origin. In pa